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Non-equilibrium scaling in the Schlogl model 

David Elderfield and Dimitri D Vvedensky 
Solid State Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BZ, 
U K  

Received 10 January 1985 

Abstract. From the reaction-diffusion master equation formulation of the Schlogl model 
we develop a comprehensive description of the non-equilibrium dynamics. Using the 
Poisson transformation and the dynamical renormalisation group we firstly show how the 
equilibrium limit is recovered, and secondly describe the low-frequency, low-momenta 
scaling behaviour of the concentration fluctuations. Our approach extends, simplifies or 
corrects previous studies and is easily generalised to treat more complicated systems. 

1. Introduction 

In recent years non-equilibrium phase transitions have been described by many authors 
(Haken 1975, Nicolis and Prigogine 1977). Simple reaction-diffusion models (Gardiner 
1982) for example show an exciting array of critical phenomena, ranging from the 
continuous transitions reminiscent of equilibrium systems to the spectacular chemical 
oscillators. In direct contrast to equilibrium studies, however, scaling and renormalisa- 
tion group ideas (Wilson and Kogut 1974, Hohenberg and Halperin 1977) have not 
yet been systematically applied. Broadly this can be attributed to the absence of a 
realistic dynamical Landau-Ginzburg description for the critical fluctuations. Quite 
generally for these non-equilibrium systems both the stationary distribution functions 
and the associated fluctuation dissipation theorems are unknown. It is therefore difficult 
to motivate simple phenomenological dynamical equations (Nitzan er a1 1974, Keizer 
1976, Vvedensky et a1 1984), again in direct contrast to equilibrium studies (Ma and 
Mazenko 1975). An alternative approach to these reaction-diff usion systems is pro- 
vided by the stochastic master equations of Gardiner et al (1976), van Kampen (1976), 
Nicolis and Prigogine (1977), which are readily solved at the mean field level of 
approximation. Such analyses indicate that the underlying Langevin description 
must possess several curious features, such as the dominance of multiplicative 
noise (Schenzle and Brand 1979) or the absence of a potential (Szipfalusy and 
Til  1982). 

In the search for a dynamical Landau-Ginzburg description a significant advance 
was made by Gardiner and Chaturvedi (1977, hereafter refered to as G C ) ,  who 
introduced the ‘Poisson transform’ (Gardiner 1983) via which simple exact Langevin 
or Fokker-Planck equations could be developed from the stochastic master equation 
approach. Unhappily, however, further progress was seriously hampered by the 
absence of a simple multi-time relation between the ‘Poissonian’ fluctuations and those 
of the original chemical master equation. This has very recently been remedied 
(Elderfield 1985), so for the first time a complete ‘first principles’ dynamical description 
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2592 D Elder-eld and D D Vvedensky 

for these reaction-diffusion systems is now available based on powerful scaling and  
renormalisation group techniques. In this communication we study the simplest of 
these non-equilibrium transitions. Described originally by Schlogl (1972), the model 
reaction system 

where it is arranged for the concentrations of A, B, C to be held fixed (an  open system), 
whilst the concentration of X is monitored, undergoes a continuous transition reminis- 
cent of those seen in equilibrium studies. Using the Poisson transform to factor out 
the critical fluctuations, we shall employ the renormalisation group to provide for the 
first time a complete dynamical scaling description. Our computation corrects, sim- 
plifies and  extends the previous studies (Mori and McNeil 1977, Dewel er a1 1977, 
Grassberger and Sundermeyer 1978, Janssen 1981, Goldhirsch and Procaccia 1981, 
Vvedensky et a1 1984, Nicolis and  Malek-Mansour 1984). In particular we show how 
in the equilibrium limit one recovers precisely the statistical mechanics result. 

2. The Poisson representation for multi-time correlation and response functions 

Phenomenologically for the Schlogl model (1) the reaction-diffusion master equation 
is defined (GC)  by the following spatially discrete form: 

N a 
- ~ ( { x , } ,  r )  = 
a t  IJ = I 

o ,[(xl  + i )P (x , ,  . . . , x, + 1 , .  . . , x, - 1, . . . , xN, r )  -x,P({xJ,  ?)I 

N + C { ( k , ~ + k , x , ) ( x , + l ) P ( x ,  , . . . ,  X , + I  , . . . ,  xN, r )  
t = l  

+[k,C+k2A(x1-1)]P(x, ,  . . . , ~ , - l , .  . . ,xN, t )  

- [ k , B x , + k , C + k , A x , + k , ~ , ( x ,  - l)]P({x,}, t)}. (2) 

Here x, is the number of X molecules in the ith cell, the non-local term represents 
cell to cell diffusion and  the local term specifies the chemical reaction (1). To solve 
(2) GC proposed writing P as a superposition of Poissonians 

For our purposes it will be sufficient to consider only the real Poisson transform 
( d p ( a )  = d a ,  9 c R); however we should remark that for this case f need not be 
positive definite, so it is best viewed as a Markovian quasi-probability (Gardiner 1982). 
Using (3) in (2), one deduces (GC) that the Poissonian fluctuations are described 
exactly by the Langevin equation (no ad hoc truncations) 

d a ,  
-= C D,a, + [ k , C  + (k ,A  - k , B ) a ,  - kqaf] + [2a,(k2A - k,cu,)]”’[,( t )  
d t  J = l  

(tt(t)t(t’))= ~ , ~ ( ~ -  r ’ )  (4) 

where the It8 prescription for the noise is to be understood. Adopting (3) on the 
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associated Fokker-Planck equation, we thus have a very flexible framework for comput- 
ing Poissonian dynamics: however, as noted above, there is a serious drawback. Let 
us consider for a moment the relation between concentration and Poissonian fluctu- 
ations. For equal time correlations it follows directly from (3) that 

or more explicitly 

To obtain multi-time information is far more difficult; however this has recently been 
accomplished (Elderfield 1985). 

Recasting (4) in terms of functional integrals using a variant of the Martin-Siggia- 
Rose formalism (de  Dominicis and Peliti 1978) one can show (Elderfield 1985) that 
the response/correlation functions are generated by a functional Z( f, I )  defined as 
follows 

Z( [ I )  = { [ d a ]  { [dar"] exp( [ d t  L+ f& + l a )  (7)  

where the Lagrangian L takes the continuum form 

L =  drd{i&(r,  t ) [ ( - D V ' + d / d t + r ) a ( r ,  t ) + u a 2 ( r ,  t)]-&*(r,  t ) ( u a ( r ,  t ) - u a 2 ( r ,  t ) )  

-i&(r, t ) h } .  (8) 

( a ( r ,  r ) )  = a ~ ( f ,  I ) / d / ( r ,  t ) ) ,=i=o 

5 
As usual one has 

with their natural generalisations. Here the continuum couplings D, r, U ,  U and h are 
related to the original reaction/diffusion constants (2) as follows 

r = ( k l B  - k,A) 

h = k,C.Ad DO2- D, 

U = k 4 K d  u = k2A 
(10) 

through the continuum limit A + c c  at fixed densities p ( r ,  t )  x,hd, a ( r ,  t )  = a , ] l d  with 
&(r ,  t )  = a ,  in d spatial dimensions. In this framework the connection formula relating 
Poissonian and concentration fluctuations takes, for the two-point function, the form 

(11) ( (p ( r ,  t ) p ( r ' ,  t)))': ( 1  +a/ah( r ' ,  t ' ) ) ( a ( r ,  t ) a ( r ' ,  t ' ) )  

or equivalently 
1 > 1  

( M r ,  t ) p ( r ' ,  t ' ) ) )  = ( a ( r ,  t ) a ( r ' ,  r ' ) ) + ( d / d r ( r ' ,  t ' ) ) ( a ( ~  t ) )  (12) 

where the couplings h ( r ,  t ) ,  ~ ( r ,  t )  (see (8) and (10)) have been used as sources. In  
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the equal time limit t - r’+ O’, ( l l) ,  (12) reduce smoothly to the known equal time 
expression (GC) 

( ( p ( r ,  t ) p ( r ’ ,  t ) ) )=(a ( r ,  t ) a ( r ’ ,  t ) ) + a ( r - r ’ ) ( a ( r ,  t ) )  (13) 

which is simply the continuum version of (6). We refer to Elderfield (1985) for a 
treatment of the higher-order correlation functions. Connection formulae for response 
functions follow by direct functional differentiation, using the identities (10). As an 
example, consider the general relation (6) 

( ( ~ ( r ,  t))) = ( a ( r ,  t ) )  

x = ( a / a c ( r ,  t ) ) ( ( p ( r ’ ,  1 ’ ) ) )  = ( a / a c ( r ,  t ) ) ( a ( r ’ ,  1 ‘ ) )  

(14) 

which implies directly that 

(15) 

where the concentration of c = c(r ,  t )  is used as a probe. On a technical level, readers 
familiar with the MSR formalism will observe that our Lagrangian contains no ‘Jacobian’ 
factor, so that the equal time mixed correlation/response functions satisfy 

( ( 6 ( t ) ) ” a ( t ) ) 9 )  = 0 (16) 

for p 3 1 and any q. Of course response functions are naturally discontinuous at equal 
time, so we are free to make any choice, providing the connection formula (11) is 
modified consistently (see Elderfield 1985). For Langevin equations with multiplicative 
noises this is a serious concern for an inappropriate choice (e.g. see Phythian 1977) 
can seriously complicate the associated diagrammatics. 

3. Scaling, mean field theory and the equilibrium limit 

Given (8) and the appropriate connection formulae ( l l ) ,  (12) and (15), it is now a 
simple matter to reproduce the known mean field behaviour (Gardiner et a1 1975, 
Gardiner 1982), using a conventional loop expansion (de Dominicis and Peliti 1975). 

Assuming the system is in a stationary state for which 

( d r ,  1 ) )  = M, (17) 

then within the mean field (or tree level) approximation the two-point correlation/ 
response functions take the form 

( D( q2 + ( -2 )  1 + iw +..) 2( V M  - uM’) 
+ = S ( q - q ’ ) 6 ( w - w ’ )  

+ ( 2 ~ ) ~ + ’ M ’ b ( y ) S ( w ) ]  

where M satisfies the deterministic equation 

-h + r M +  u M 2 = 0  
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and we have introduced the correlation length 

6 = [ ( h  + u M 2 ) /  MD]-”2. (21) 

Qualitatively, therefore, for h = 0 as r passes through zero the system undergoes a 
continuous phase transition closely resembling those seen in equilibrium. Briefly as 
r + Ot the correlation length 6 diverges in the classical manner, with the onset of long 
range order giving rise to a spontaneous ‘magnetisation’ M. As emphasised by Gardiner 
and Walls (1978), Nicolis and Malek-Mansour (1984), there are, however, important 
differences. Consider, for example, the time resolved two-point correlation function 
C(q ,  t )  which from (19) takes the form 

+(27r)dM%(q) . (22) 1 (UM - UM2)  
D(q2+ F2)  C(q, t )  ‘2’ S ( q  - q ’ )  [ exp(-D(q2+ t-’)t) ( 

In the equilibrium limit when the reactions ( 1) balance independently (Gardiner 1983), 
one must replace (20) by 

u~ - u k f 2  = 0 = - h  + ( r +  u ) M  
so that one obtains 

Ceq( q, t )  ‘Lo d ( q  - q ’ ) [ M  exp(-D(q2+ [ - 2 ) t )  + ( 2 ~ ) ~ d ( q ) M ~ ]  (24) 
or equivalently 

so that at short times correlations are intrinsically short range. On the other hand, for 
non-equilibrium steady states, characterised by the lack of detailed balance (or fluxes 
of A, B, C), then there are long range correlations even at short times. For d = 3 spatial 
dimensions (22) reduces at equal time to 

in agreement at large distances with the work of Nicolis and Malek-Mansour (1984). 
The relation (25) is of course not entirely surprising for one would surely hope to 
recover the Poissonian statistics of equilibrium statistical mechanics (Gardiner et a1 
1976) in the equal time limit ( t  - t ’ +  O+) for this special case. Using the Poisson 
transform, it is quite simple to prove that this is a general feature. Shifting the field 
ff(r,  t )  

a ( r ,  t ) = ( U ’ ( r , t ) + M  (27) 
leads to a Lagrangian L(&, (U’) of the form 

L =  drd{i&(-h+rM+uM2)-&2(uM-uM2) 

+ia” [ ( -DV2+d/d t+  r+2uM]& + uG2) - G 2 [ ( u  -2uM)(U’ - u(U”]). (28) 
Now, choosing M to satisfy the deterministic equation (20), one finds in equilibrium 
(23) that (28) possesses the symmetry 

J 

i & ( t )  e [ u / ( ~ - 2 u M ) l ( U ’ ( - t )  (29) 
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and therefore all the connected correlation functions vanish 

(&(r , ,  t,)G(r2, t2)  . . . &(rk, tk))eq = O  (30) 

since trivially pure response functions are identically zero, whence the equilibrium 
steady state distribution agrees with the statistical mechanics approach. 

More generally, our formalism provides a flexible description of non-stationary or 
spatially inhomogeneous states (a ( r ,  t ) )  = M(r, t),  closely akin to a dynamical Landau- 
Ginzburg description. Introducing the 'generalised thermodynamical potential' 

r({G, M I )  = ln(Z({ i, 1 1 ) )  - J drd d t (  fA2 + I M )  (31) 

which for the Schlogl model in mean field theory takes the form 

r({fi, M I ) =  i drd{iA(r ,  t ) [ ( -DV2+a/at+r)M(r ,  t )+uM2(r ,  t ) ]  

- A ( ,  t)*(vM(r, t )  - uM2(r, t ) )  - ihG(r ,  t ) )  

one has a complete description through the extrema1 relations 

aT/aM(r, t)=O=ar/aA?(r, t )  (33) 

in association with the familiar correlation/response equations (de Dominicis and 
Peliti 1978) 

drId 5 dt '  
0 

a2r a2r 
r' ,  t ')  aM( r", t") 

0 
a M (  r', t ' )  a M (  r", t" )  

= S (  r - r")S ( t - t"). (34) 
Using the connection formulae ( 6 ) ,  ( l l ) ,  (12) and (151, predictions for the reaction- 
diffusion problem then follow in a controllable way. In the meanje ld  approximation, 
for example, the two-point correlation function is given by 

which reduces for stationary and homogeneous states (17), to the previous expression. 

4. Scaling and the renormalisation group 

In the vicinity of the phase transition of course the mean field approximation ((17) et 
seq)  is rather poor, for the corrections diverge through the dimensionless coupling 

g =  ( U V / D ' ) ( ( ) ' ' - ~ '  (36) 
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in d < 4  spatial dimensions (Mori and McNeil 1977). In our formalism this feature 
is very clear. Rescaling the fields 6, a we may write in the form 

L = d r d  { ib( r ,  t ) [ ( -DV’+d /d t+  r ) a ( r ,  t )  - s] 

+ w(i$(r, t)P2(r, t ) - b 2 ( r ,  t ) ~ ( r ,  t))+u(P*(r,  t ) ~ ( r ,  f))*~ 

p = c u ( u / v ) ” ’ ,  p* = 6 ( v / u ) ” ’ ,  s = h ( u / v ) ” *  (38 )  

w = (UU)”’. (39) 

(37) 

5 
where 

and the dominant nonlinear coupling w is given by the relation 

To determine the relevance near the critical point of the various non-linear couplings 
in (37 )  we now follow Brezin et a1 (1973) and analyse their naive dimensions. In terms 
of the microsFopic length 1 (or time T =  12/D)  we can scale frequencies w,  momenta 
k and fields P, p as 

(40) w - k 2  - P* - p - / - d / 2  

and so immediately conclude that the nonlinear couplings (37)  satisfy 

9 (41) 

leading directly to the identification of w as the dominant coupling, and  whence to 
(36). Of course, as one would expect, we can control the divergent corrections to mean 
field theory using the dynamical renormalisation group (de  Dominicis and  Peliti 1978); 
however, let us first compare (37)  with the phenomenological Lagrangians of Vvedensky 
et a1 (1984) and Janssen (1981): 

L,= 

- ~ ( d  -41/2 - I ‘ d - 2 ’  

drd{ip*(r, t)[(-DV2+d/dt+r)p(r,  t ) - s ] +  w(ip*(r, t)p2(r,  t ) -b*( r ,  t)p(r,  t ) ) }  

(42) 

L,= L,+ drd[isp*2(r, t ) -Dp( r ,  t)(Vb(r,  t ) ) 2 ] .  (43 1 

I 
i 

As U (41) is an  irrelevant coupling we see that the low frequency/momentum properties 
of L and L,  are identical. I f  the Poissonian and  concentration fluctuations are 
effectively indistinguishable at such scales, the phenomenological approach of 
Vvedensky et a1 (1984) is therefore vindicated. This is indeed the case, for analysing 
the connection formula ( (  1 l ) ,  (12)) perturbatively, we observe that the Poisson correla- 
tions satisfy 

( P P ) =  ~ +++*+++ (44) 

( u / v ) ( ( p p ) - ( p ) ) - ( P P ) =  -3 + (45) 

whilst the concentration fluctuations obey 

and thus the dominant terms at low frequencies and  momenta are common to both 
systems. Here - are correlation, whilst - are response lines. In sharp contrast 
the scaling properties of L, are rather different. Janssen (1981), in attempting to 
describe both local and non-local correlations (see (22) et seq),  loses both control over 
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the equilibrium limit and seriously complicates the scaling properties. For s # 0 (43) 
is a model with tricritical scaling rather than the Reggeon-like scaling expected (Grass- 
berger and Sundermeyer 1978). 

Now for polynomial field theories such as (37), the dynamical renormalisation 
group technique is well established (Brezin et al 1973, de Dominicis and Peliti 1978). 
Focusing on the function r[$, MI (31), it is straightforward to show 

where r is the microscopic timescale ( r =  1 2 /  D )  and the dimensionless coupling C is 
defined by 

$ = W T (  D T ) - ~ ’ ~ .  (47) 

The functions p (  m), e( m), 4(  *) are identical (up to a finite irrelevant renormalisation) 
to those of the Reggeon model (Abarbanel et a1 1976), so that the Schlogl model is 
in the same universality class since therefore the critical exponents are identical (Brezin 
et a1 1973). This feature can be traced to the common symmetry 

ip*(r, t )  e p ( r ,  - t )  (48) 

which in the Schlogl model is essential if the appropriate equilibrium limit is to be 
found (see (29)). At the transition this symmetry of course breaks unless equilibrium 
conditions prevail, in which case the system trivialises. Legendre transforming (46), 
one finds directly 

a r  
ln(Z((1, f}, w, 0, r, 7) )  

which on functional differentiation yield the renormalisation group equations 

(51) 

for the concentration ( p )  (=  ( a )  see (14)) and the two-point correlation function. We 
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have employed the familiar relations (see (9)) 

and on the basis of our discussion ((44) er seq)  equated the Poisson and chemical 
correlation functions in the low frequency/momentum domain of interest. The solution 
of the renormalisation group equations (50) and (51 )  is now standard (Brezin et a1 
1973). In the vicinity of the phase transition the coupling O takes its fixed point value 
8* = [ f S 4 ~ ( 2 n ) - 4 ] 1 / 2  leading to the scaling forms 

) ( p )  = (V/UDd/2)~/21rl~(d+r?)/2f(h(U~d/2/u)1/2/lrj u ( d + ( Z - ? ) z ) / 2  

( p ( q ,  w ) p ( q ‘ ,  or)>= S ( q  - q ’ ) S ( w  -w‘>( (u /u ) I r l -”“ -” ’  

x g ( u / l r ( ” ,  Dq2 / r2Y ,  h( u D d / 2 / u ) 1 / 2 / l r l  v ( d + ( 2 - r ) ) z ) / 2  ) 

+ (2 ..) d + l (  d2& 9 )  1) (54) 

in which the critical exponents z = 2/ (  1 - e( O*)), v = f( 1 - e(  O*))/( 1 - 4( O*)), 77 = 
v(O*) are identified. The functions J ;  g are universal. At leading order in E = 4 - d  
we find 

28* f 
= (Dq2/lrI2” + r/lrl +2O*fI2+ ( w / ~ r ~ ” z ) 2  

( 5 5 )  

so for the first time the scaling behaviour of the Schlogl model is characterised in the 
vicinity of the phase transition for all values of the scaling parameter h /  Irl u ( d + ( 2 - T ) z ) / 2 ,  

To the first non-trivial order the critical exponents are given by 

z = 2/(  1 - e( * * ) )  = 2 - & ~  + o ( E ’ )  

~ = f ( i  -e(0*))/(1-4(8*))=f-t-~~+0(&*) (56) 
7) = 77( 0*) = -A& + o( E 2 )  

although they are known already to 0 ( e 2 )  from the Reggeon model (Abarbanel et al 
1976). We thus correct the previaus work of Goldhirsch and Procaccia (1981) and 
Vvedensky et a1 (1984). It is also important to observe that, although the critical 
exponents of the Reggeon and Schlogl models are the same (see (46) and (47)), the 
ordered phases are rather different. In the Schlogl model there is a stationary state, 
whilst in the Reggeon system one obtains the ‘expanding cone’, Amati er a1 (1976) 
solutions familiar from a directed percolation analogy (Cardy and Sugar 1980). Using 
our formalism we have, therefore, a comprehensive description of the low-frequency, 
low-momenta structure of the Schlogl model; however, we would emphasise that to 
obtain the equal (or short) time behaviour is rather more difficult. For the Schlogl 
model in the presence of diffusion there are no ‘potential’ solutions (Haken 1975, 
Gardiner 1983), so it is intrinsically very difficult to identify the fluctuation dissipation 
theorems (Risken 1984), via which th’e equal time correlation functions can be inferred 
directly from the low-frequency response functions described above. At present the 
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best we can do is naively integrate the scaling form ( 5 5 )  and (56)  obtaining 

5. Summary 

We have demonstrated how the Poisson transform of Gardiner and Chaturvedi (1977) 
with the connection formulae developed by Elderfield (1985) can give a comprehensive 
description of Schlogl model (1). Our computation corrects, simplifies and extends 
the many previous studies. We would emphasise that we have demonstrated for the 
first time how in the equilibrium limit one regains precisely the steady state distribution 
suggested by statistical mechanics (Gardiner et a1 1976, Nicolis and Malek-Mansour 
1984); a result which hints at the power of the Poisson transform. Close to the critical 
point we have shown the Schlog). and Reggeon models belong to the same universality 
class in that they share common critical exponents. The ordered phases (stationary 
state against expanding cone) are of course decidedly different. We would finally note 
that the characterisation of the stationary distribution function remains, beyond mean 
field theory, an interesting but essentially unsolved problem. 
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